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Abstract

We consider the variational complex on infinite jet space and the complex of variational deriva-
tives for Lagrangians of multidimensional paths and study relations between them. The discussion
of the variational (bi)complex is set up in terms of a flat connection in the jet bundle. We extend it
to supercase using a particular new class of forms. We establish relation of the complex of varia-
tional derivatives and the variational complex. Certain calculus of Lagrangians of multidimensional
paths is developed. It is shown how covariant Lagrangians of higher order can be used to represent
characteristic classes.
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1. Introduction

It is possible to include the “Euler–Lagrange operator” (the LHS of the Lagrange equa-
tions) into a complex on the space of infinite jets, the so-called variational complex. In
this approach, Lagrangians (multiplied by volume forms) appear in a particular term of this
complex, the other terms consisting of certain forms or classes of forms on the jet space. The
explanation of this complex is in a spectral sequence due to Vinogradov. On the other hand,
there is another complex, which we call the complex of variational derivatives (suggested by
one of the authors), and in which the variational derivative is the main ingredient of the dif-
ferential forall terms. Each term consists of Lagrangians of multidimensional paths, and the
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differential increases the dimension of paths by one. The purpose of this paper is to initiate
the study of the relation of these two complexes connected with variational problems.

The paper consists of three sections. InSections 2 and 3we mainly review the material
concerning the variational complex. Obviously, it is well known to experts. However, we
make a point in systematically using the framework of the canonical flat connection in the
infinite jet bundle and following analogies with the more familiar differential-geometric
constructions. The exposition is designed so as to make easy the transfer to the super case
(which is done inSection 4). Interpreting the Cartan distribution (the contact distribution) as
a connection works only for infinite jets. Hence, we make them, not finite jets, our primary
objects. Hopefully, this exposition can help to straighten out and clarify some points.

In Section 2, we define the Cartan connectionΓ in the jet bundle. It gives the exterior
covariant differential on horizontal forms, which extends to the “horizontal” differential
on arbitrary forms. The “vertical” differential is obtained as the Lie derivative alongΓ

considered as a form-valued vector field. This gives a canonical bicomplex on the jet space.
In Section 3, Vinogradov’s spectral sequence and variational complex are described in this
language and the relation with the classical variational problem is explained.

In Section 4, we introduce the complex of variational derivatives. The variational complex
is revisited and generalized for supermanifolds. Since the straightforward generalization of
the usual bicomplex turns out to be not satisfactory, we introduce a new class of forms
adequate for this case. These forms are particular hybrids of integral and differential forms.
Then we establish relation between the complex of variational derivatives and the varia-
tional complex using a sequence of bicomplexes corresponding to increasing dimension of
the manifolds of parameters. In the framework of the complex of variational derivatives
we study covariant Lagrangians of the first and higher order, which are natural integra-
tion objects over surfaces. We begin to develop a “calculus of covariant Lagrangians”,
in particular, we consider the composition of Lagrangians and relate it with some densi-
ties for characteristic classes. This study is in progress and we hope to elaborate it else-
where. Potentially it can be linked with symplectic reduction and various invariants for
supermanifolds.

Main sources on jet geometry and variational complex are the books by Bocharov et al.
[3] and Olver[10] (see also[11]). They contain plenty of reference for other works. Ex-
perts might notice that though our exposition in the preliminary sections owe much to these
basic sources, our approach in many points differs from both[3,10]. In our work we use
supermathematics. Not only we try to generalize to supercase, but we substantially rely on
supermethods, which simplify constructions important for the geometry of jets. For super-
manifolds theory we refer to[1,7], two chapters in[8], and to[18]. Concerning integration
theory we particularly refer to[18,19].

2. Preliminaries: Cartan connection on infinite jet space

2.1. Infinite jet space

Consider a fibre bundleπ = π(E,M,F) over anr-dimensional manifoldM with the
fibreF .
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Consider the fibre bundleJ k(π) → M of k-jets of local sections ofE. If xa =
(x1, . . . , xm) andϕµ = (ϕ1, . . . , ϕn) are some local coordinates onM andF respec-
tively, then(xa, ϕµσ ) = (xa, ϕµ, ϕ

µ
a1, ϕ

µ
a1a2, . . . , ϕ

µ
a1···ak ) are natural local coordinates on

J k(π). Hereσ = a1 · · · ap is a multi-index,p = |σ | ≤ k. Notice that the natural bundles
J k(π) → E, J k(π) → J l(π) (k > l) are not vector bundles, though their respective fibres
are Euclidean spaces.

Consider the spaceJ∞(π) of infinite jets, i.e. the inverse limit of the manifoldsJ k(π).
We denote byC∞(J k(π)) the space of smooth functions onJ k(π) (k = 0,1,2, . . . ,∞).
Every functionf on J∞(π), by the definition, has finite order, i.e. depends on a finite
number of variables:f = f (x, (ϕµ, . . . , ϕ

µ
α1···αp )). In other words,f ∈ C∞(J p(π)) for

some finitep.
To every local sections(x) of the fibre bundleE corresponds itsk-jet, (jks)(x) =

(xa, ϕµ(x), ϕ
µ
a (x), . . . , ϕ

µ
a1···ak (x)), whereϕµa1···ap (x) = ∂pϕµ(x)/∂xa1 · · · ∂xap , which is

a section ofJ k(π), and the infinite jet(js)(x) = (xa, ϕµ(x), ϕ
µ
a (x), . . . , ϕ

µ
a1···ap (x), . . . ),

which is a section ofJ∞(π).
In the sequel we shall denoteJ := J∞(π). Infinite jets will be simply called “jets”. We

shall use the notation [ϕ] for the whole collectionϕµσ . The use of infinite jets is natural for
the analysis of variational problems, because the variation of action increases the order of
derivatives involved.

For a functionf = f (x, [ϕ]) on J and a local sections(x) of the bundleE → M the
valuef |s is defined as

f |s = f ◦ js = f (x, [ϕ(x)]). (2.1)

This is a function onM.
Vectors and vector fields on the space of infinite jetsJ are derivations of the algebra

C∞(J ). They have the form

X = Xa ∂

∂xa
+Xµ

σ

∂

∂ϕ
µ
σ

, (2.2)

where the number of non-zero coefficients can be infinite. (Summation in(2.2) is over
multi-indices of all orders.) A vector onJ is vertical if its projection onM vanishes, i.e.
Xa in (2.2)equals to zero.

Consider now the algebraΩ = Ω(J ) of differential forms on the space of infinite
jets. Differential forms that vanish on vertical vectors are calledhorizontal forms. They
have the appearanceω = ∑

ωa1···ap (x, ϕ
µ
σ )dxa1 · · · dxa1. (We don’t write the wedge sign.

Instead, we use a convention of supermathematics that the differential dxa is odd for an even
variablexa .)

2.2. The Cartan connection

In the fibre bundleJ → M there is a natural connection specified by the vector-valued
one-form

Γ =
∑
µ,σ

Γ µ
σ

∂

∂ϕ
µ
σ

, (2.3)
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which takes values in vertical vectors. (Summation in(2.3) goes over all multi-indices.)
Here the coefficients

Γ µ
σ = dϕµσ − dxbϕµbσ (2.4)

are the so called Cartan one-forms. We callΓ the Cartan connection. Herebσ is the
multi-indexba1 · · · ak, if σ is the multi-indexa1 · · · ak.

The distribution of the horizontal planes w.r.t. the connectionΓ is called theCartan
distribution, its dimension ism = dimM. The ideal in the algebraΩ(J ) corresponding to
the Cartan distribution (consisting of all forms vanishing on the distribution) will be denoted
CΩ ⊂ Ω. It is generated by the Cartan forms(2.4). (Notice that the Cartan distribution is
defined onJ k(π) for finite k also, but there it does not correspond to a connection.)

The Cartan connection in the bundleJ → M is flat. That means that the idealCΩ is a
differential ideal: d(CΩ) ⊂ CΩ. The flatness of the Cartan connection (the integrability
of the Cartan distribution) is an essential feature of the infinite jet space. For finitek the
Cartan distribution onJ k(π) is not integrable.

Every tangent vector onJ can be uniquely decomposed into a vertical and a horizontal
vector:X = Xvert + Xhor, whereXvert := 〈X,Γ 〉, the value of the one-formΓ onX, and
Xhor := X −Xvert.Xhor belongs to the Cartan distribution,〈Xhor, Γ 〉 = 0:

X = Xa ∂

∂xa
+Xµ

σ

∂

∂ϕ
µ
σ

= Xa

(
∂

∂xa
+ ϕµaσ

∂

∂ϕ
µ
σ

)
︸ ︷︷ ︸

horizontal

+ (Xµ
σ −Xaϕµaσ )

∂

∂ϕ
µ
σ︸ ︷︷ ︸

vertical

. (2.5)

Let us emphasize that every connection in an arbitrary fibre bundle defines two operations:
acovariant derivative of sectionsand acovariant derivative of functions on the total space.
If X is a vector on the base at a pointx0, then the covariant derivative of a sections alongX,
DXs, is the vertical component of the vectors∗X, which is a vertical tangent vector to the
total space at the points(x0); the covariant derivative alongX of a functionf on the total
space at a pointy0 of the total space, DXf , is the usual derivative off along the horizontal
lift of the vectorX toy0. (In the familiar case of vector bundles, these notions correspond to
the usual covariant derivative of sections, and that of sections of the dual bundle, which can
be treated as fiberwise linear functions on the total space.) They are related by the “Leibniz
formula”:

X(s∗f ) = (DXs)f + s∗(DXf ), (2.6)

wheres is the section,f the function on the total space, andX is the vector field on the
base. (Notice that then DXs is a vector field along the maps.)

In particular, for the bundleJ → M the covariant derivative of a sectionj (x) =
(xa, ϕµ(x), ϕ

µ
a (x), ϕ

µ

ab(x), . . . ) is

DXj = 〈j∗(X), Γ 〉 = Xa

(
∂ϕ

µ
σ

∂xa
− ϕµaσ

)
∂

∂ϕ
µ
σ

. (2.7)

The covariant derivative of a functionf onJ is

DXf = Xa Daf = Xa

(
∂f

∂xa
+ ϕµaσ

∂f

∂ϕ
µ
σ

)
(2.8)
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(in particular,X(f |s) = (DXf )|s), and there is acovariant differentialof f as a horizontal
1-form:

Df = dxa Daf = dxa
(
∂f

∂xa
+ ϕµaσ

∂f

∂ϕ
µ
σ

)
. (2.9)

The operation D :C∞(J ) → Ω1
hor(J ) extends to theexterior covariant differentialon

horizontal forms of arbitrary degree:

D(ωa1···ak dxa1 · · · dxak ) = (Dωa1···ak )dxa1 · · · dxak . (2.10)

In a coordinate-free notation, Dω = dω − Γ ω, where

Γ ω = Γ µ
σ

∂ωa1···ak
∂ϕ

µ
σ

dxa1 · · · dxak (2.11)

(this makes sense only for horizontal forms). We arrive at the sequence

0 → Ω0
hor

D→Ω1
hor

D→ · · · D→Ωm−1
hor

D→Ωm
hor → 0, (2.12)

whereΩk
hor is the space of horizontalk-forms. Due to flatness of the Cartan connection,

D2 = 0. Hence,(2.12)is a complex. This complex is the first part of the variational complex
defined in the next section.

2.3. The bicomplexΩ∗∗(J)

The operation(2.11)and the differential(2.10)introduced above can be extended from
horizontal forms to the whole algebraΩ(J ). This can be done using operations with
form-valued vector fields. Let us briefly recall the necessary notions.

It is very convenient to use “super” language. A differential form on a manifoldM can
be considered as a function of even (commuting) variablesxa and odd (anticommuting)
variables dxa : ω = ω(x,dx). We denote parity of all objects by tilde:̃xa = 0, d̃xa = 1.
The variablesxa,dxa are coordinates on the supermanifoldΠTM associated with tangent
bundleTMofM. In these terms the exterior differential d onΩ(M) is nothing but the vector
field dxi(∂/∂xi) ∈ Vect(ΠTM).

A form-valued vector fieldX ∈ Vect(M,Ω(M)) has the appearance

X = Xi(x,dx)
∂

∂xi
. (2.13)

(Warning: it isnot a vector field onΠTM.) TheLie derivativeLX along X is the vector
field onΠTM defined by the conditions:LXf = Xf for an arbitrary function onM andLX
commutes with d:

[LX,d] = LX ◦ d − (−1)X̃ d ◦ LX = 0. (2.14)

Hence,

LX = Xi(x,dx)
∂

∂xi
+ (−1)X̃ dXi(x,dx)

∂

∂ dxi
. (2.15)
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All vector fields onΠTM commuting with d have the appearanceLX for some form-valued
vector fieldX onM. TheNijenhuis bracket[X, Y ] of form-valued vector fieldsX andY is
defined by the following formula:

[LX,LY ] = L[X,Y ] . (2.16)

It extends the usual commutator. Explicitly,

[X, Y ] = (LXY
i − (−1)X̃ỸLYX

i)
∂

∂xi
. (2.17)

Now we can apply these constructions to our situation. The connection 1-formΓ can be
viewed as a form-valued vector field onJ :

Γ = Γ µ
σ

∂

∂ϕ
µ
σ

= (dϕµσ − dxaϕµaσ )
∂

∂ϕ
µ
σ

. (2.18)

The flatness ofΓ is equivalent to

[Γ, Γ ] = 0 (2.19)

(Nijenhuis bracket). It follows that

[LΓ ,LΓ ] = 2L2
Γ = 0 (2.20)

for the Lie derivative alongΓ . From the explicit formula above, we get for an arbitrary
formω ∈ Ω(J ):

LΓ ω = (dϕµσ − dxaϕµaσ )
∂ω

∂ϕ
µ
σ

− dxa dϕµaσ
∂ω

∂ dϕµσ
. (2.21)

Hence,LΓ xa = 0, LΓ ϕ
µ
σ = Γ

µ
σ , LΓ dxa = 0, LΓ dϕµσ = −dxa dϕµaσ . Notice that for

horizontal formsLΓ ω = Γ ω as defined in(2.11). It also follows that

LΓ Γ
µ
σ = 0, (2.22)

because [Γ, Γ ] = 2(LΓ Γ
µ
σ )(∂/∂ϕ

µ
σ ). It turns out to be convenient to express forms in terms

of the variablesxa , ϕµσ , dxa , Γ µ
σ instead ofxa , ϕµσ , dxa , dϕµσ . Written in these variables,

LΓ is simply

LΓ = Γ µ
σ

∂

∂ϕ
µ
σ

(2.23)

for all forms.
Define on arbitrary forms operationsδ and D so thatδ = D + δ:

δω := LΓ ω, (2.24)

Dω := dω − LΓ ω. (2.25)

The operatorsδ and D are called theverticalandhorizontal differentials, respectively. (Quite
often the notation dV and dH is used.) Asδ2 = L2

Γ = 0 and [d, δ] = [d,LΓ ] = 0, hence
D2 = 0, and [D, δ] = D ◦ δ + δ ◦ D = 0, so we have a bicomplex. Clearly, the horizontal
differential D extends the covariant differential of horizontal forms(2.10).
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We can introduce an invariantbigrading in the algebraΩ(J ) by the degrees in the
variables dxa andΓ µ

σ . By definition,

Ωp,q(J ) := {ω ∈ Ω(J )|#Γ µ
σ = p and #dxa = q}, (2.26)

where #dxa , etc. means the degree in the respective variables. The total degree isp+q. Since
one can easily obtain D(xa) = dxa , D(ϕµσ ) = dxaϕµaσ , D(dxa) = 0, D(Γ µ

σ ) = dxaΓ µ
aσ

(from the formulas for d and forδ = LΓ above), we have for a formω = ω(x, [ϕ],dx, Γ ):

Dω = dxa
(
∂ω

∂xa
+ ϕµaσ

∂ω

∂ϕ
µ
σ

+ Γ µ
aσ

∂ω

∂Γ
µ
σ

)
, (2.27)

δω = Γ µ
σ

∂ω

∂ϕ
µ
σ

. (2.28)

Hence, D :Ωp,q(J ) → Ωp,q+1(J ), δ : Ωp,q(J ) → Ωp+1,q(J ).
(There is a remote analogy with complex manifolds, where the integrability is provided

by the condition [J, J ] = 0 and there is a bigrading of forms by dz and d̄z. Of course, in our
case there is no such symmetry that exists between the holomorphic and antiholomorphic
differentials.)

2.4. Evolutionary vector fields

Consider the action of vector fields on the connection 1-formΓ . Notice first that geo-
metricallyΓ has the meaning of a projector onto the vertical subspace in a tangent space
to J , the kernel of this projection being the horizontal subspace (thus defined). It is easy
to see that for an arbitrary projectorP , its preservation by some flow is equivalent to the
preservation of two distributions, the image ofP and the kernel ofP (the image of 1−P ).
The preservation of the image as such is equivalent to(1−P)◦LXP = 0, while the preser-
vation of the kernel is equivalent toP ◦LXP = 0. So in our case, vector fields that preserve
Γ , preserve both the Cartan distribution and the fibre structure inJ → M. Preservation of
the Cartan distribution as such is equivalent to〈LXΓ, Γ 〉 = 0.

As the Lie derivativeLXΓ is nothing but the Nijenhuis bracket [X,Γ ], it follows that at
no extra cost we can include in our consideration vector fields taking values in forms. (This
might be useful, e.g. for studying deformations.) Then [X,Γ ] = −(−1)X̃[Γ,X].

We decompose the tangent space at some pointj ∈ J into the horizontal subspace with
a natural basis Da = ∂/∂xa + ϕ

µ
aσ ∂/∂ϕ

µ
σ and the vertical subspace with a natural basis

∂/∂ϕ
µ
σ . Since〈Da,dxb〉 = δba , 〈Da, Γ

µ
σ 〉 = 0, 〈∂/∂ϕµσ ,dxb〉 = 0, 〈∂/∂ϕµσ , Γ ν

τ 〉 = δστ δ
ν
µ,

this is the dual basis for the basis of 1-forms dxa ,Γ µ
σ . It makes sense to consider horizontal

and vertical vector fields separately.
Clearly, horizontal vector fields on J are tangent to the Cartan distribution and pre-

serve it automatically. They preserve also the bundle structureJ → M if they have the
form DX = Xa(x)Da whereXa = Xa(x) (i.e., if they have the form of the covariant
derivatives along vector fields on M). For the general form-valued case, the condition is
δXa = 0 componentwise. Indeed, one can check thatLXΓ

µ
σ = XaΓ

µ
aσ , henceLXΓ =

[X,Γ ] = −(−1)X̃δXa Da , by a direct computation with the formula(2.17). The complex
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of form-valued horizontal vector fields obtained here:

Ω∗,q(J,Vecthor)
δ→Ω∗+1,q(J,Vecthor) (2.29)

with δ applied componentwise, is an example of “vertical” complexes of forms onJ with
coefficients in arbitrary vector bundles coming fromM, i.e. withδ-flat transition functions
(independent ofϕµσ ).

The case of vertical vector fields is more interesting. Consider a section of the pull-back
to J of the vertical subbundle ofTE. It has an appearance of a “generalized” vertical vector
field on the bundleE with coefficients depending on jets:

Y = Yµ(x, [ϕ])
∂

∂ϕµ
. (2.30)

Denote byPY the vertical vector field onJ uniquely defined by the conditions:PY f = Yf
for all functions onE andLPY Γ = 0. Explicitly,

PY =
∑
|σ |≥0

D|σ |
σ Yµ

∂

∂ϕ
µ
σ

. (2.31)

Objects(2.30)(to which correspond genuine vector fieldsPY onJ ) are calledevolutionary
vector fields[10]. Vertical vector fields on J preserve the Cartan distribution(they clearly
preserve the bundle structure inJ → M) if they have the formPY for some evolutionary
vector field Y.

Indeed, for an arbitrary vertical vector field taking values in forms

Ŷ = Yµσ (x, [ϕ],dx, Γ )
∂

∂ϕ
µ
σ

(2.32)

one can directly find thatL
Ŷ
Γ
µ
σ = (−1)Ỹ (dYµσ − dxaYµaσ ), hence

L
Ŷ
Γ = [Ŷ , Γ ] = (−1)Ỹ dxa(DaY

µ
σ − Yµaσ )

∂

∂ϕ
µ
σ

. (2.33)

For a usual vector field, we deduce that the conditionLYΓ = 〈LYΓ, Γ 〉 = 0 gives rise to
the inductive formula

Yµaσ = DaY
µ
σ , (2.34)

hence all coefficientsYµσ are uniquely defined from the coefficientYµ = Yµ(x, [ϕ]) as
Y
µ
σ = D|σ |

σ Yµ = Da1 · · · Da|σ |Y
µ. The initial termYµ(∂/∂ϕµ) corresponds to the restriction

of Ŷ to the subalgebra of functions ofxa, ϕµ. (The formula [Γ, Y ] = −(−1)Ỹ [Y, Γ ] =
(dxaYµaσ − DYµσ )(∂/∂ϕ

µ
σ ) can be interpreted as a differential in a complex of form-valued

vertical vector fields.)
Since the vertical vector fields onJ preserving the Cartan distribution form a subalgebra

in Vect(J ), the formula

[PY ,PZ] = P[Y,Z] (2.35)
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defines a bracket [Y,Z] on evolutionary vector fields, known as theJacobi bracket[3,10],
which extends the usual commutator of vertical fields onE. (Compare with the construction
of the Nijenhuis bracket.) Explicitly,

[Y,Z] = (PYZ
µ − PZYµ) ∂

∂ϕµ
. (2.36)

Notice the following useful properties of evolutionary fields:

[D, ιPY ] = 0, (2.37)

[δ, ιPY ] = LPY , (2.38)

whereι stands for the interior multiplication. The equality(2.37)follows from (2.27) and
(2.31), and the equality(2.38) follows then from(2.37)and the usual relation between d
andι. It also follows that

[LPY ,D] = 0 (2.39)

for all evolutionary fieldsY .
Every vector field onJ preserving the Cartan connectionΓ can be uniquely decomposed

into DX + PY , whereX is a vector field onM andY is an evolutionary vector field. If
we do not require that the bundle structureJ → M is preserved, then DX can be replaced
by an arbitrary horizontal field. It is easy to see that horizontal fields form an ideal in the
Lie algebra of vector fields preserving the Cartan distribution, and [DX,PY ] = 0 for all
X ∈ Vect(M).

Evolutionary vector fields model the variations of the independent argument of the clas-
sical calculus of variations, see below inSection 3.

Example 2.1. Every vector field on the total spaceE,

X = Xa(x, ϕ)
∂

∂xa
+Xµ(x, ϕ)

∂

∂ϕµ
, (2.40)

defines the Lie derivative (infinitesimal variation) of a sections : M → E:

(LXs)(x) =
(
Xa(s(x))

∂ϕµ

∂xa
(x)−Xµ(s(x))

)
∂

∂ϕµ
, (2.41)

which is a vector field along the maps : M → E. We can reinterpret it as a particular
evolutionary vector field:

Y := (Xa(x, ϕ)ϕµa −Xµ(x, ϕ))
∂

∂ϕµ
. (2.42)

The subalgebra of such fields under the Jacobi bracket is isomorphic to the Lie algebra
Vect(E).

For every vector field(2.40)onE, its prolongationX(∞) ∈ Vect(J ) can be defined by
the conditions thatX(∞)f = Xf for all functions onE andX(∞) preserves the Cartan
distribution. DecomposingX(∞) into the horizontal and vertical components, we see that
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X(∞) = Xa(x, ϕ)Da −PY whereY is the evolutionary vector field(2.42)corresponding to
X. (The minus sign beforePY is explained by a “duality” of functions and sections, hence
the opposite signs in the respective Lie derivatives.)

3. Vinogradov’s spectral sequence and variational complex

3.1. Main construction

In the complex(Ω,d) of differential forms on infinite jet spaceJ there is a natural
filtration by the powers of the Cartan idealCΩ:

· · · ⊂ CkΩ ⊂ Ck−1 ⊂ · · · ⊂ Ω ⊂ CΩ ⊂ C0Ω = Ω, (3.1)

whereCkΩ denotes thekth power of the idealCΩ and d is the usual de Rham differential.
d(CkΩ) ⊂ CkΩ, because the Cartan distribution is integrable. By standard homological
algebra, we come to theVinogradov spectral sequence[14],

(E∗∗
r ,dr ) ⇒ H ∗

DR(J ) (3.2)

converging to the de Rham cohomology of the spaceJ , with the zeroth term

E
p,q

0 = CpΩp+q

Cp+1Ωp+q . (3.3)

In our case of a bundleE → M (seeRemark 3.1below) the filtration(3.1) is actually
induced by the bigrading(2.26):

CpΩp+q = Ωp,q ⊕Ωp+1,q−1 ⊕Ωp+2,q−2 ⊕ · · · , (3.4)

and the Vinogradov spectral sequence is a spectral sequence of the bicomplex(Ω∗∗(J ),D, δ).
We can identify its zeroth term(3.3)with Ω∗∗:

E
p,q

0 = Ωp,q(J ), (3.5)

and the differential d0 is the horizontal differential D :Ωp,q → Ωp,q+1. The zeroth row
of E∗∗

0 is the complex(2.12)of horizontal differential forms onJ .
Clearly,Ωp,q = 0 for q ≥ m + 1 (m is the dimension of the baseM). Since the fibres

of the bundleJ → E are contractible, we may say that the spectral sequence converges to
H ∗(E). The following essential fact holds:

Proposition 3.1. If p ≥ 1, then for allq < m

E
p,q

1 = Hq(Ωp,∗,D) = 0. (3.6)

Hence,E0,q
1 = E

0,q
∞ = Hq(E) for q ≤ m− 1, andEp,m2 = E

p,m
∞ = Hp+m(E) for p ≥ 0.

This fact has a purely algebraical origin[3]. We shall illustrate the main idea of the proof
of this proposition when analyzing the content of the spaceE

1,m
1 (see below).
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Because of the degeneration property(3.6), all the information about the spectral sequence
(3.2) is contained in the following complex[3]:

E
0,0
0

d0→E
0,1
0

d0→ · · · d0→E
0,m−1
0

d0→E
0,m
0

d1◦p→ E
1,m
1

d1→E
2,m
1

d1→E
3,m
1

d1→ · · · , (3.7)

wherep is the projectionE0,m
0

p→E
0,m
1 . This complex is called thevariational complex.

Two halves of the complex(3.7)can be described in terms of the bicomplexΩ∗∗(J ) as
follows. The first half is the complex of horizontal forms(2.12):E0,q

0 = Ω0,q with d0 = D;
the second half consists of classes of forms:E

p,m

1 = Ωp,m/D(Ωp,m−1), and d1 is the
vertical differentialδ acting on classes.

Hence, the cohomology of the complex(3.7)in dimensions 0, . . . , m− 1 coincides with
E

0,k
1 , k = 0, . . . , m − 1. In dimensionsk ≥ m the cohomology coincides withE0,k

2 .
It follows that the cohomology of the variational complex in all dimensions is exactly
H ∗

DR(J ) = H ∗
DR(E). In particular, the variational complex is acyclic after(m+ n)-th term

(wheren is the dimension of the fibre).

Remark 3.1. In a more general case of the so-called “projective jets”[3,10] for an(m +
n)-dimensional manifoldE, without a bundle structure, there is no bicomplex, but the
filtration (3.1) and the Vinogradov spectral sequence survive. The space of projective jets
is not contractible toE.

3.2. Relation with the classical variational problem

The first part of the variational complex(3.7) is the complex of horizontal differential
forms(2.12). Horizontal forms of top degree (m-forms)L = L(x, [ϕ])Dx areLagrangians.
We denote byDx the coordinate volume form dx1 · · · dxm. Later we shall also use the no-
tationDxa for the(m−1)-form (−1)a−1 dx1 · · · dxa−1 dxa+1 · · · dxm. If s(x) = (x, ϕ(x))

is a section of the fibre bundleE → M, then the value of the Lagrangian on this section
L|s = L|sDx (see(2.1)) defines a top-degree differential form (m-form) on the manifoldM.

Hence, a LagrangianL defines an action functional on sections ofE:

S[ϕ] =
∫
M

L =
∫
M

L

(
x, ϕ(x),

∂ϕ

∂x
(x), . . .

)
Dx (3.8)

Solution of the variational problem for this functional leads to the Euler–Lagrange equations
for the sections(x):

Fµ|s = 0, (3.9)

where thevariational derivativeFµ = Fµ(L) is defined by the following expression:

Fµ(L) = ∂L

∂ϕµ
− Da

∂L

∂ϕ
µ
a

+ D2
ab
∂L

∂ϕ
µ

ab

− · · · . (3.10)

The mapE0,m
0

p→E
0,m
1 used in the construction of(3.7)corresponds to the projection of

Lagrangians to equivalence classes modulo D-coboundaries,L �→ [L] = L + D(Ω0,m−1).
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If F = FaDxa is a horizontal(m − 1)-form, then DF = DaF
aDx, so, in the classical

language, equivalent Lagrangians “differ by a divergence”. On arbitrary sections,

L′|s − L|s = DF|s = ∂

∂xa
(F a|s)Dx. (3.11)

Hence,
∫

L′ and
∫

L may differ only by boundary terms, and the variational derivative

(3.10)is well-defined on classes [L] ∈ E
0,m
1 .

Now compare these classical considerations with the corresponding differential in the
variational complex(3.7). Consider the action of the differential d1 ◦ p : E0,m

0 → E
1,m
1 ,

i.e. the action of the differential d1 on the equivalence class [L] ∈ E
0,m
1 of a Lagrangian

L = LDx. According to(2.24),

d1[L] = [δL + · · · ] =
⌈∑
σ,µ

Γ µ
σ

∂L

∂ϕ
µ
σ

Dx + · · ·
⌉
, (3.12)

where dots denote differential forms belonging to the image of the differential D :Ω1,m−1 →
Ω1,m. For example, forF = FαDxα ∈ Ω0,m−1, we have d1[DF] = [δDF] = −[DδF] = 0
(compare with(3.11)).

To find the correspondence between the image(3.12)of the differential d1 ◦ p and the
variational derivative(3.10), we shall study the content of the spaceE1,m

1 in (3.7).
Consider the filtration in the Cartan idealCΩ induced by the order of the multi-index

of Cartan forms. IfΩ1,q is the space of differential(q + 1)-forms that are linear in Cartan
forms, then denote byΩ1,q

(k) the subspace ofΩ1,q consisting of formsω = ∑
|σ |≤k Γ

µ
σ ω

σ
µ,

whereωσµ is a horizontalq-form. One can show that ifω ∈ Ω
1,q
(k) for k ≥ 1 and Dω = 0, then

ω is equal up to a D-coboundary to a formω′ = ω−Dτ ∈ Ω
1,q
(k−1). Thus every D-closedω ∈

Ω
1,q
(k) is equivalent to a form̃ω ∈ Ω

1,q
(0) . For example, ifω ∈ Ω

1,m
(k) , ω = Γ

µ
σ B

σ
µ(x, [ϕ])Dx

with σ = a1 · · · ak, then automatically Dω = 0 and from(2.27) and (2.28)it follows that

ω= Γ µ
σ B

σ
µDx = δϕµσ B

σ
µDx = (δDϕµ

σ ′)B
aσ ′
µ Dxa = −(Dδϕµ

σ ′)B
aσ ′
µ Dxa

= −D(δϕµ
σ ′B

aσ ′
µ Dxa)− δϕ

µ

σ ′D(Baσ
′

µ Dxa)=−Γ µ

σ ′(DaB
aσ ′
µ )Dx−D(δϕµ

σ ′B
aσ ′
µ Dxa),

whereσ ′ = a2 · · · ak. By iterating this we come to the mapρ : Ω1,m → Ω
1,m
(0) :

ρ : Γ µ
σ B

σ
µDx �→ Γ µ(−1)|σ |D|σ |

σ BµDx, (3.13)

so that

ρ(ω) = ω + D(Ω1,m−1). (3.14)

Proposition 3.2. The mapρ defined by(3.13) establishes an isomorphism between the
spaceE1,m

1 and the subspaceΩ1,m
(0) ⊂ Ω1,m.

We call formsω ∈ Ω
1,m
(0) thecanonical representativesof cohomological classes [ω] ∈

E
1,m
1 . (If ω ∈ Ω

1,q
(0) , whereq < m, and Dω = 0, then one can notice directly thatω = 0.
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Thus we come to the statement ofProposition 3.1in the caseq = 1. Forp ≥ 2 the argument
is similar.) Similar analysis of the contents ofEp,m1 can be performed forp > 1.

Using the homomorphismρ, we immediately deduce from(3.12)that

d1[L] = [δL] =
⌈∑
σ,µ

Γ µ
σ

∂L

∂ϕ
µ
σ

Dx

⌉
= [Γ µFµ(L)Dx], (3.15)

whereFµ(L) is the variational derivative(3.10)for the LagrangianL = LDx.
Relations between these purely algebraic considerations and the variational problem for

the functional(3.8)can be established with the help of evolutionary vector fields considered
above. For an evolutionary fieldY = Yµ(x, [ϕ])(∂/∂ϕµ) consider the mapsIY : Ep,m1 →
E
p−1,m
1 andLY : Ep,m1 → E

p,m

1 ,

IY [ω] := [ιPY ω], (3.16)

LY [ω] := [LPY ω], (3.17)

wherePY ∈ Vect(J ) is defined by(2.31). These maps are well-defined, becauseιPY andLPY
commute with D (see(2.37) and (2.39)), so for an arbitrary formτ ∈ Ωp,m−1, ιPY Dτ =
−D(ιPY τ ) andLPY Dτ = D(LPY τ ). From(2.38)it also follows that

[d1, IY ] = LY (3.18)

on classes of forms inEp,m1 .

In particular, let [ω] = [Γ µ
σ B

σ
µDx] be an arbitrary class inE1,m

1 andω′ = ρ(ω) =
Γ µB̃µDx be its canonical representative (B̃µ = (−1)|σ | D|s|

σ B
σ
µ ). Then it follows from

(3.16)that for an arbitrary evolutionary vector fieldY

IY [ω] = IY [ω′] = [YµB̃µDx]. (3.19)

Consider a LagrangianL = LDx. LetY = Yµ(x, [ϕ])(∂/∂ϕµ) be an arbitrary evolutionary
vector field. For a sections(x) = (x, ϕ(x)) of the bundleE, the value ofY on s gives an
infinitesimal variation:

ϕµ(x) �→ ϕµε (x) = ϕµ(x)+ εYµ(x, [ϕ(x)]). (3.20)

Then

L|s �→ L|sε = L|s + ε(LPY L)|s , (3.21)

and

S[ϕ] �→ S[ϕε] = S[ϕ] + ε

∫
(LPY L)|s . (3.22)

From the results above we know thatLPY (L) = ιPY δL + διPY L = ιPY δL. It follows from
(3.15) and (3.19)that

[LPY (L)] = [ιPY δL] = IY [δL] = [YµFµ(L)Dx]. (3.23)
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Since the integral is constant on classes (for compactly supported forms), we conclude that

S[ϕε] = S[ϕ] + ε

∫
(YµFµ(L))|sDx. (3.24)

In other words, these considerations make it possible to recover in a purely algebraic way
the Euler–Lagrange formula for the variation of action induced by a variation of section.

To summarize: working with classes inEp,m1 is an algebraic model of integration; passing
to other representative inside a class, e.g. gettingΓ µ’s fromΓ

µ
σ ’s as above, corresponds to

classical integration by parts. With this in mind, we rewrite the variational complex(3.7)as

0 → Ω0
hor

D→Ω1
hor

D→ · · · D→Ωm
hor

δ→
∫
Ω1,m δ→

∫
Ω2,m δ→

∫
Ω3,m δ→ · · · (3.25)

with a suggestive notation
∫
Ωp,m := E

p,m

1 = Ωp,m/D(Ωp,m−1) and restoringδ for d1,
as acting on classes. The formula(3.15)is rewritten then as

δ[L] = [δϕµFµ(L)Dx], (3.26)

which is identical (even to the letterδ) with the classical formula for the variation of the
functionalS (which we can identify with [L]). The Cartan formsΓ µ = δϕµ play the role
of “abstract variations”, similar to differentials dxa in usual calculus, while evolutionary
vector fields correspond to actual variations of sections, analogous to vectors in usual
calculus. The formula(3.24)corresponds to “taking value” of the “differential”(3.26)on a
“vector” Y .

4. The complex of variational derivatives and relations of two complexes

4.1. The complex of variational derivatives

In this section we shall consider another complex related with Euler–Lagrange equations:
the complex of Lagrangians of parameterized surfaces in a given manifoldM. Actually, we
shall perform all considerations for an arbitrary supermanifold. The variational complex
considered above can be generalized for supercase, too (seeSection 4.2).

Let M = Mm|n be a supermanifold with coordinatesxa . Consider anr|s-dimensional
coordinate superspaceR

r|s with standard coordinatest i . In our notation some of coordinates
are even, some odd. The parity of indices is the parity of the respective coordinates,ã := x̃a ,
etc. In the sequel we shall often omit the prefix “super” (unless required for clarity). Consider
smooth maps of a neighborhood of zero inR

r|s toM. Consider the supermanifold of jets
of such maps, of orderk, at point zero. (In the supercase jets are defined exactly as in the
purely even case.) Denote it byT (k)r|s M. In local coordinates the elements ofT (k)r|s M will

be [x] = (xaσ ) = (xa, xai , . . . , x
a
i1···ik ). There are natural projectionsT (k+1)

r|s M → T
(k)
r|s M.

Consider the inverse limitT∞
r|sM of the sequence of bundles:

· · · → T
(k+1)
r|s M → T

(k)
r|s M · · · → T

(1)
r|s M → T

(0)
r|s M = M. (4.1)
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Definition 4.1. We call the manifoldT (k)r|s M the manifold oftangentr|s-elements of order
k (k = 0,1,2, . . . ,∞).

Tangent elements of infinite order will be shortly calledtangent elements. Clearly, tangent
1|0-elements of the first order are simply (even) tangent vectors:T

(1)
1|0M = TM. Tangent

r|s-elements of the first order are arrays ofr even ands odd tangent vectors. Notice that
for k > 1, the bundleT (k)r|s M → M is not a vector bundle.

We definer|s-LagrangiansonM as smooth functions on the space ofr|s-tangent ele-
mentsT∞

r|sM. (As before, we consider functions of finite order.) Denote the space of all

r|s-LagrangiansbyΦr|s = Φr|s(M).
Considerr|s-paths(r|s-dimensional parameterized surfaces), i.e. mapsγ : Ur|s → M

(whereUr|s ⊂ R
r|s). Notice that there is no condition like immersion at this moment. Every

r|s-pathxa = xa(t) at the pointt defines the tangent element

[x(t)] =
(
xa(t),

∂xa

∂t
(t),

∂2xa

∂t i∂tj
(t), . . .

)
. (4.2)

Every LagrangianL ∈ Φr|s(M) defines a functional onr|s-paths:

S[γ ] =
∫
Ur|s

L([x(t)])Dt, (4.3)

whereDt is the standard coordinate volume form onUr|s ⊂ R
r|s .

Remark 4.1. There are two essential differences with the setup of the previous section.
First, the space of parametersR

r|s is endowed with fixed coordinatest i . This allows to
consider the “standard” volume elementDt and to define our Lagrangians as functions (not
as forms on jet space). Second, Lagrangians considered here are geometrical objects onM

(notRr|s or R
r|s ×M), hence cannot depend ont i .

From the variational problem for the functional(4.3)one can easily obtain the following
formula for the variational derivative:

Fa(L) = ∂L

∂xa
− (−1)ãι̃ Di

(
∂L

∂xai

)
+ · · · =

∞∑
|σ |=0

(−1)|σ |+ãσ̃ D|σ |
σ

(
∂L

∂xai

)
. (4.4)

Here Di stands for the total derivative with respect tot i (covariant derivative in the termi-
nology of the previous sections):

Di = xai
∂

∂xa
+ xaij

∂

∂xaj
+ · · · . (4.5)

(Clearly,Fa(L) = Fa(L) for the LagrangianL = LDt considered as a form, compare with
the next subsection on the variational complex in the supercase.)

Definition 4.2. The differential of an r|s-LagrangianL is the (r + 1|s)-Lagrangian−dL
defined by the formula[16]

−dL = xar+1Fa(L). (4.6)
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Here−dL depends onxai1···ik where the lower indices run over the set that includes one more

even indexr + 1, corresponding to the new even variablet r+1. We call the operator−d the
variational differential.

Proposition 4.1 (see[16]). −d 2 = 0.

We arrive at thecomplex of variational derivativeson a (super)manifoldM:

0 → Φ0|s −d→Φ1|s −d→Φ2|s −d→ · · · . (4.7)

Remark 4.2. In the purely even case, an example ofr-Lagrangian of the first order is
provided by an arbitraryr-form. It is easy to see that in this case the operator−d gives the
usual Cartan–de Rham exterior differential on forms. To express the exterior differential in
terms of variational derivatives was the original idea of one of the authors dating back to
[15]. The motivation was to get the correct definition of the Cartan–de Rham complex in
the supercase (see[15,18,19]), seeSection 4.3. On the other hand, for general Lagrangians,
it seems geometrically very natural to have a complex where “variation of action” directly
gives the differential. This is achieved by the identification of the number of independent
variables with the cohomological degree increased by the action of the differential.

An application of the complex(4.7) to symmetries of Lagrangians was given in[5].

4.2. Variational complex in super context

Much of the considerations ofSections 2 and 3carries over to supermanifolds without
difficulties. A tricky thing is the choice of the precise class of forms that should be used. The
analog of the Cartan–de Rham complex for supermanifolds in its full generality is highly
nontrivial (seeRemarks 4.3 and 4.4below). (This was one of the sources of the current
research, in particular, of the study of the complex of variational derivatives, seeSection
4.4.) However, for the purposes of this paper, these complications can be circumvented, as
it is shown below, if we are only interested in forms necessary to construct the super version
of the variational complex(3.25).

LetE → M be a fibre bundle where bothE andM are supermanifolds. Let dimM = m|n
(dimension of the base). We continue to use the coordinatesxa for M andϕµ for the fibre.
Some of them are even, some odd. The parity for all objects is denoted by tilde. The jet
bundles, in particular, the infinite jet bundleJ → M, are defined exactly as in the purely
even case. The natural coordinates for jets,ϕ

µ
σ , have parity of the corresponding partial

derivatives:ϕ̃µσ = µ̃+ σ̃ , whereσ̃ := ã1 + · · · + ãk for a multi-indexσ = a1 · · · ak. They
enjoy the symmetry propertyϕµ

σabτ = (−1)ãb̃ϕµ
σbaτ , for each pair of neighbor indices. As

before, all functions are of finite order, i.e. depend on a finite number of the coordinates
ϕ
µ
σ . Vector fields can have infinitely many nonzero coefficients.
LetΠTJ be the antitangent bundle forJ , i.e. the tangent bundle with reversed parity of

fibres. The natural local coordinates inΠTJ arexa , ϕµσ , dxa , dϕµσ . The differentials are
treated as independent variables of parity opposite to that of the respective coordinates. We
shall consider various functions onΠTJ including generalized functions w.r.t. the variables
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dxa and dϕµσ . The space of all such functions (without specifying a class) will be denoted
here byΩ(J ). Warning: it is not an algebra, as not for all functions multiplication is defined.
In particular, insideΩ(J ) is contained the algebra of “naı̈ve” differential forms, consisting
of functions polynomial in differentials. The exterior differential d can be viewed as an
odd vector field on the supermanifoldΠTJ, d(xa) = dxa , d(ϕµσ ) = dϕµσ , d(dxa) = 0,
d(dϕµσ ) = 0.

Remark 4.3. On arbitrary supermanifold, the straightforward analog of usual differen-
tial forms (free supercommutative algebra generated by differentials of coordinates) does
not contain objects of integration like volume forms, because the “super-Jacobian” (the
Berezinian) is a fraction, not a polynomial. So such “naı̈ve” forms make only a part of
quite tricky picture of forms on supermanifolds, see, in particular,[18,19]. In the context of
this paper it is possible to simplify our task by considering, as we do, a particular class of
the so-called Bernstein–Leites pseudodifferential forms[2,18,19]instead of arbitrary super
forms.

The Cartan connection form is defined as before,

Γ = Γ µ
σ

∂

∂ϕ
µ
σ

, (4.8)

where

Γ µ
σ = dϕµσ − dxaϕµaσ . (4.9)

It defines the decomposition of tangent and cotangent spaces and their opposites (spaces
with reversed parity) into the horizontal and vertical subspaces. In particular, for the tangent
space a basis of the horizontal subspace consists of partial covariant derivatives

Da = ∂

∂xa
+ ϕµaσ

∂

∂ϕ
µ
σ

, (4.10)

and a basis of the vertical subspace consists of the derivatives∂/∂ϕ
µ
σ . For the anticotangent

space, a basis of the horizontal subspace consists of the differentials dxa and a basis of the
vertical subspace consists of the formsΓ µ

σ . These bases of vectors and 1-forms are dual.
It is convenient to use dxa andΓ µ

σ as fibre coordinates inΠTJ instead of dxa and dϕµσ .
Notice that

dΓ µ
σ = (−1)ã dxaΓ µ

aσ . (4.11)

The form-valued vector fieldΓ gives the Lie derivativeLΓ , which is a vector field on
ΠTJ generating the infinitesimal transformation

ϕµσ �→ ϕµσ + εΓ µ
σ , (4.12)

dϕµσ �→ dϕµσ − ε dΓ µ
σ = dϕµσ − ε(−1)ãΓ µ

aσ (4.13)

(hereε is an odd constant,ε2 = 0). It follows thatΓ µ
σ �→ Γ

µ
σ , i.e.

LΓ Γ
µ
σ = 0, (4.14)
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which is equivalent to the vanishing of the Nijenhuis bracket

[Γ, Γ ] = 0 (4.15)

(flatness of the connectionΓ ). Hence, we can decompose d= D+δ: if ω = ω(x, [ϕ],dx, Γ )
is a function onΠTJ written in the coordinatesxa , ϕµσ , dxa , Γ µ

σ , then

dω = dxa
(
∂ω

∂xa
+ ϕµaσ

∂ω

∂ϕ
µ
σ

+ (−1)ãΓ µ
aσ

∂ω

∂Γ
µ
σ

)
︸ ︷︷ ︸

horizontal

+ Γ µ
σ

∂ω

∂ϕ
µ
σ︸ ︷︷ ︸

vertical

, (4.16)

or

D = dxa
(
∂

∂xa
+ ϕµaσ

∂

∂ϕ
µ
σ

+ (−1)ãΓ µ
aσ

∂

∂Γ
µ
σ

)
, (4.17)

δ = LΓ = Γ µ
σ

∂

∂ϕ
µ
σ

. (4.18)

The differentials D andδ commute: Dδ + δD = 0, and D2 = δ2 = 0. In particular,

Γ µ
σ = δϕµσ . (4.19)

One can introduce a bigrading into the algebra of naı̈ve differential forms exactly as in
the purely even case considered inSection 2:

Ωp,q(J ) := {ω ∈ Ω(J )|#Γ µ
σ (ω) = p and #dxa(ω) = q}, (4.20)

whereω is assumed to be polynomial in dxa andΓ µ
σ , and #dxa , #Γ µ

σ stand for the degree in
the corresponding variables. It is possible to carry on with the filtration and spectral sequence
as above. The trouble is that in the super case these considerations give nothing for the
variational problem: since naı̈ve differential forms cannot be integrated over supermanifolds
(seeRemark 4.3), Lagrangians are not contained in the complexΩ∗∗(J ).

The correct class of forms onJ , adequate for our purposes, can be introduced as follows.
(This new class of forms particularly designed for the needs of variational complex may be
interpreted as hybrids of “integral forms” and naı̈ve differential forms, seeRemark 4.4.)

Recall that for arbitrary “super” variablesza the delta-functionδ(z) corresponds to the
distributionf �→ f (0) w.r.t. the Berezin integration in variablesza . In particular, for even
variables it is the usual delta-function, and for odd variablesξ i

δ(ξ1, . . . , ξn) = ξnξn−1 · · · ξ1 (4.21)

(maximal product; notice the inverse order). Delta-functionδ(z) satisfies the property

δ(z) = δ(z′) ·
(

Ber
∂z

∂z′

)−1

sign det

(
∂z

∂z′

)
00

(4.22)

for a non-singular change of variables, where Ber is the Berezinian and the indices 00
refer to the even–even block of the Jacobi matrix. Consider the delta-functionδ(dx) of the
variables dxa (no confusion should be with the vertical differentialδ!). This is well-defined,
because the differentials dxa transform through themselves under changes of variablesxa
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andϕµσ . Moreover, from the property(4.22)we obtain the following transformation law:

δ(dx) = δ(dx′) ·
(

Ber

(
∂x

∂x′

)Π)−1

sign det

(
∂x

∂x′

)
11

= δ(dx′) · Ber
∂x

∂x′ · sign det

(
∂x

∂x′

)
11
, (4.23)

where the superscriptΠ denotes reversion of parity of rows and columns of a matrix (notice
that BergΠ = (Berg)−1). It follows that up to a sign factor,δ(dx) transforms exactly as
the Berezin volume elementDx and thus can be identified with such. More precisely,
we consider (generalized) functions onΠTJ that are supported at the closed submanifold
ΠVJ ↪→ ΠTJ (VJ is the vertical subbundle), which is locally specified by the equations
dxa = 0. Let them take values in the local system sign det(TM)1. This eliminates the above
sign factor. Now, every such function is a linear combination of the delta-functionδ(dx)
and its derivatives. We introduce the following notation:

Dx := δ(dx), (4.24)

Dxa1···ak := ∂

∂ dxa1
· · · ∂

∂ dxak
δ(dx). (4.25)

After introducing the said local coefficients, the formula(4.24)is a genuine identification. (In
particular, for a purely even manifoldMm, we haveDx = δ(dx) = dxm dxm−1 · · · dx1 =
±dx1 · · · dxm; notice slight difference of sign from our notation inSection 3.) The forms
that we need have the appearance:

ω = 1

k!
ωa1···akDxak ···a1 (4.26)

(k! and the order of indices are chosen for convenience). The coefficientsωa1···ak depend
onxa , ϕµσ andΓ µ

σ . From(4.24) and (4.25)follow the rules of operations with the symbols
Dx andDxa1···ak :

dxa Dx = 0, (4.27)

∂

∂ dxa
Dxa1···ak = Dxaa1···ak , (4.28)

dxa Dxa1···ak =
k∑
i=1

(−1)ã+(ã+1)(α1+···+ãi−1+i−1)δaaiDxa1···âi ···ak , (4.29)

where hat means that the index is dropped. In particular, for arbitrarya,

dxaDxa︸ ︷︷ ︸
no summation

= (−1)ãDx. (4.30)

The space of forms(4.26)is not an algebra, but as follows from(4.27)–(4.29), it is a module
over the “näıve” algebra of polynomial forms, of “Fock type”, where multiplication by dxa

acts as annihilation operators for a “vacuum vector”Dx.
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Consider forms(4.26)with coefficients polynomial inΓ µ
σ . Define

Σp,q(J ) :=
{
ω = 1

k!
ωa1···akDxak ···a1|#Γ µ

σ (ω) = p and k = m− q

}
. (4.31)

(We haveΣp,q(J ) ⊂ Ω(J )⊗ E, whereE is the orienting sheaf for(TM)1.) Herem is the
even dimension of the base:M = Mm|n. Operations D andδ act onΣ∗∗. Forω as in(4.26),
one can find from(4.17), (4.18), (4.27)–(4.29)that D acts as a “divergence”:

Dω = − 1

(k − 1)!
(−1)(ω̃+m)(ã+1) Daω

ab1···bk−1Dxbk−1···b1, (4.32)

andδ acts componentwise:

δω = 1

k!
Γ µ
σ

∂ωa1···ak

∂ϕ
µ
σ

Dxak ···a1. (4.33)

Notice that D :Σp,q → Σp,q+1 andδ : Σp,q → Σp+1,q . The bicomplexΣ∗∗ is bounded
at the bottom and at the right:Σp,q = 0 for p < 0 or q > m. In particular, there is a
complex of horizontal forms

· · · → Σ0
hor

D→Σ1
hor

D→ · · · D→Σm−1
hor

D→Σm
hor → 0, (4.34)

whereΣq

hor = Σ0,q . (It is not bounded at the left.)
Applying the machinery of homological algebra to the bicomplexΣ∗∗(J ), we arrive at

a spectral sequence analogous to(3.2). In particular, we obtain thevariational complexfor
the super case:

· · · → Σ0
hor

D→Σ1
hor

D→ · · · D→Σm
hor

δ→
∫
Σ1,m δ→

∫
Σ2,m δ→

∫
Σ3,m δ→ · · · . (4.35)

Here the elements of the space
∫
Σp,m are formal integrals

∫
ω, whereω ∈ Σp,m. These

formal integrals are in 1–1-correspondence with classesωmod D(Σp,m−1). One subtlety is
that for consistence with the parity of the genuine Berezin integral we define the isomorphism∫
Σp,m ∼= E

p,m

1 = Σp,m/D(Σp,m−1) as having parityn (wheren is the odd dimension
of the baseM = Mm|n). Notice the following properties of this complex: it is not bounded
from the left (differently from(3.25)) and it is not bounded from the right (similar to(3.25)).
Still, its cohomology is the ordinary cohomology of the underlying topological space of the
bundleE.

The relation with the classical calculus of variations is exactly as in the purely even case.
Suppose we have a LagrangianL = L(x, [ϕ])Dx. It is an element ofΣ0,m. The action
(treated formally) is the class

∫
L ∈ ∫ Σ0,m ∼= Σ0,m/D(Σ0,m−1). Considerδ

∫
L (sinceδ

and D commute, it makes sense to applyδ modulo D-coboundaries). We have,

δ

∫
L = (−1)n

∫
δL = (−1)n

∫
Γ µ
σ

∂L

∂ϕ
µ
σ

Dx. (4.36)

To transform this, consider first an arbitrary formω ∈ Σ1,m. Let

ω = Γ µ
a1···akB

a1···ak
µ Dx = δϕµa1···akB

a1···ak
µ Dx. (4.37)
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Exactly as we did to obtain(3.13), we can show, using(4.30), that there is an equality
modulo D(Σ1,m−1):

ω = δϕµa1···akB
a1···ak
µ Dx = −(−1)ãkµ̃δϕµa1···ak−1

DakB
a1···ak
µ Dx.

From here we deduce the mapρ giving canonical representatives:ω ≡ ρ(ω)mod
D(Σ1,m−1), where

ρ(ω) = (−1)|σ |+σ̃ µ̃δϕµ D|σ |
σ BσµDx, (4.38)

whereσ = a1 · · · ak. Applying this to(4.36), we obtain

δ

∫
L = (−1)n

∫
δϕµ(−1)|σ |+σ̃ µ̃ D|σ |

σ

∂L

∂ϕ
µ
σ

Dx, (4.39)

which is exactly

δ

∫
L = (−1)n

∫
δϕµFµ(L)Dx, (4.40)

with

Fµ(L) = (−1)|σ |+σ̃ µ̃ D|σ |
σ

∂L

∂ϕ
µ
σ

(4.41)

being the variational derivative in the super case.

Remark 4.4. Forms that we introduce here are hybrids of Bernstein–Leites integral forms
(multivector densities of weight 1) on the baseM with differential forms on fibres. This can
be seen directly if one applies the Fourier–Hodge transform to our formulas(4.24)–(4.26).
We preferred not to work with a “hybrid” definition explicitly in order to avoid a nonlocal
transformation law under coordinate changes (though it would not occur if one sticks to
the non-holonomic frameΓ µ

σ ), choosing instead the language of generalized functions. To
put this into a proper framework, one should notice that, in general, the space of forms on
a supermanifold is�r|s (see[19]), wherer|s is a super dimension. For the jet spaceJ the
most general bicomplex would carry a bigrading like�r|s,p|q . The näıve spaces of forms
Ωp,q that we initially introduced are exactly�p|0,q|0; the “correct” spaceΣp,q that we
used for the variational complex coincides with�p|0,q|n (heren is the odd dimension of
the baseMm|n).

Remark 4.5. The calculus of variations for the super case was considered for the first time
by Martin, in a pioneering work[9]. In particular, the idea of an integral over odd variables
as a class modulo total derivatives dates back to that paper. Among recent works, the paper
[13] should be mentioned. It treats Lagrangian formalism in an algebraic setting of quite
general graded-commutative algebras. There is little overlapping with our present analysis,
however, because in[13] the emphasis is on defining such objects as the Berezinian, the
Berezin integral, etc. in an algebraic fashion and in great generality, and here we start from
integration theory for supermanifolds considered known (see, e.g.[18,19]) and develop our
theory upon it—the crucial thing is singling out the proper classes of forms.
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4.3. Relation of complexes

Let us compare the variational complex(3.7) and (3.25)with the complex of variational
derivatives(4.7). For simplicity consider a purely even case. (The general super case is
similar.) Consider for everyr the trivial fiber bundleπ(r) = R

r × M with baseR
r and

fibreM and the corresponding space of jetsJ∞(π(r)). In the sequel we shall shortly denote

J(r) := J∞(π(r)). There is a natural projectionJ(r) → T
(∞)
r onto the bundle of tangent

elements ofM.
Consider the embeddingΩ∗

(r) ↪→ Ω∗
(r+1) induced by the natural projectionpr : π(r+1) →

π(r), whereΩ∗
(r) is the space of differential forms on the spaceJ(r). Consider the filtrations

(3.1)generated by the Cartan ideals in the spacesΩ∗
(r) andΩ∗

(r+1) and the zero termsE∗∗
(r)0,

E∗
(r+1)0 of the corresponding spectral sequences (see(3.3)).

Proposition 4.2.

1. Under the projectionpr , the kth power of the Cartan ideal inΩ∗
(r) maps to the(k−1)-th

power of the Cartan ideal in the spaceΩ∗
(r+1):

p∗
r : CkΩ∗

(r) → Ck−1Ω∗
(r+1). (4.42)

2. The map(4.42)induces a map of the zeroth terms of the corresponding spectral sequences
E
p,q

(r)0 → E
p−1,q+1
(r+1)0 . Thus it defines a map of bicomplexesΩ∗∗

(r) → Ω∗∗
(r+1) of bidegree

(−1,1):

κr : Ωp,q

(r) → Ω
p−1,q+1
(r+1) . (4.43)

Proof. Let ω = ω(x,dt, Γ ) be a form inΩp,q(J(r)). HereΓ = Γ(r) stands for Cartan
forms onJ(r). Notice thatΓ a

(r)σ = Γ a
(r+1)σ + dt r+1xar+1,σ . Hence,

p∗
r ω = ω(x,dt, Γ(r)) = ω(x,dt, Γ(r+1))+ dt r+1xar+1,σ

∂ω

∂Γ a
(r)σ

. (4.44)

The first term in the RHS belongs toΩp,q(J(r+1)) and the second term in the RHS belongs
toΩp−1,q+1(J(r+1)). It follows that the induced mapκr : Ωp,q(J(r)) → Ωp−1,q+1(J(r+1))

is given by the formula

κrω = dt r+1xar+1,σ
∂ω

∂Γ a
(r)σ

. � (4.45)

For example, letω = Γ a
(r)Γ

b
(r)i ∈ Ω

2,0
(r) be a differential form onJ(r), where

Γ a
(r) = dxa −

∑
i≤r

dt ixai , Γ b
(r)i = dxbi −

∑
j≤r

dtj xbij . (4.46)

Under the embedding(4.42)the formω = Γ a
(r)Γ

b
(r)i gives the form

p∗
r ω = (Γ a

(r+1) + dt r+1xar+1)(Γ
b
(r+1)i + dt r+1xbr+1,i ) ∈ C1Ω2

(r+1) (4.47)
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on the spaceJ(r+1). Hence,κrω = xar+1dt r+1Γ b
(r+1)i + Γ a

(r+1)x
b
i.r+1 dt r+1, which belongs

toΩ1,1
(r) .

Consider the induced action ofκr on variational complexes(3.25). Clearly,κr vanishes
on Ω0,q

(r) andκr(
∫
Ω

1,r
(r) ) ⊂ ∫

Ω
0,r+1
(r+1) . Recall the mapρ that takes classes in

∫
Ω

1,r
(r) to

their canonical representatives, see(3.13). Define the mapχr :
∫
Ω

1,r
(r+1) → Ω

0,r+1
(r+1) as the

compositionκr ◦ρ. We shall use the mapχr to analyze the relation between the variational
complex and the complex of variational derivatives(4.7).

Assign to everyr-LagrangianL on Mm the horizontalr-form L = LDt(r) on J(r),
whereDt(r) is the coordinate volume form on the space of parametersR

r . Consider the
(r + 1)-Lagrangian−dL = xar+1Fa(L), whereFa(L) = Fa(L) is the variational derivative

(4.4). To it corresponds the form−dLDt(r+1) = xar+1Fa(L)Dt(r+1) belonging toΩ0,r+1
(r+1) . On

the other hand, consider the canonical representative of the elementδ[L] ∈ E
1,r
(r)1, which

is the formρ(δ[L]) = Γ aFaDt(r) = (dxa − ∑
1≤i≤r dt ixai )FaDt(r) belonging toΩ1,r

(r) .
Applyingκr we obtain the action ofχr onδ[LDt(r)]. Thus we have the following proposition:

Proposition 4.3. For every r-Lagrangian L
−dLDt(r+1) = χr(δ[LDt(r)]). (4.48)

Remark 4.6. Vanishing of the induced mapκr :
∫
Ω

1,r
(r) → ∫

Ω
0,r
(r+1) on the image of

the mapδ : Ω0,r
(r) → ∫

Ω
1,r
(r) together with the formula(4.48)implies that−dLDt(r+1) is a

D-coboundary, i.e.−dL is a total divergence.

4.4. The complex of variational derivatives and covariant Lagrangians

Considerr|s-LagrangiansL on a supermanifoldM such that for everyr|s-pathγ : xa =
xa(t) the corresponding functionalS[γ ] depends only on the image of the pathx(t). That
means that ifγ1 andγ2 are two arbitrary paths such thatx2(t) = x1(f (t)), wheref is an
orientation preserving diffeomorphism ofR

r|s , then∫
L|γ1Dt =

∫
L|γ2Dt. (4.49)

Definition 4.3. We callL a covariantr|s-Lagrangian of weightρ if for arbitrary r|s-path
γ and an arbitrary orientation preserving diffeomorphismf of R

r|s the following condition
holds:

L|f ∗γ (Dt)
ρ = f ∗(L|γ (Dt)ρ). (4.50)

If a covariantr|s-Lagrangian has weightρ = 1 then this condition is equivalent to the
condition(4.49).

Remark 4.7. The condition of covariance (in a more explicit way written below as(4.51))
implies a restriction on allowed paths. Recall that originally nothing like a non-singularity
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has been imposed. However, because the Berezinian has a denominator, one should require
that “odd velocity vectors” in the argument of a covariant Lagrangian of weightρ > 0
be linearly independent. That is, we have to require an immersion in odd directions (no
restriction in even directions) for our paths. Such maps were called “proper maps” in[18].
(Similarly, for negative weights, we have to require immersivity in even directions.) In
particular, this holds for embedded surfaces. A covariantr|s-LagrangianL of weight ρ
onM defines a densityL|x(t)(Dt)ρ of weightρ on an arbitraryr|s-dimensional surface
embedded inM.

Remark 4.8. Embedded surfaces (submanifolds) from the viewpoint of mathematical
physics provide a language where “fields” and “coordinates” are on an equal footing. This
approach is due to Schwarz, see, for example,[12]. This language was proved to be pow-
erful in supergravitation. Covariant Lagrangians for embedded surfaces (called “densities”
by Schwarz) are important because they provide natural objects of integration over such
surfaces. In supermathematics, covariant Lagrangians of the first order (definednotonly for
embedded surfaces, but for arbitrary proper paths) provide a starting point for the definition
of forms, see, e.g.[18,19], and below.

In the language of tangent elements the covariance condition(4.50) can be stated as
follows. In the space of tangentr|s-elements at every point ofM acts the (super)group
of jets of diffeomorphisms of the neighborhood of the origin inR

r|s that fix the origin.
Denote itG(r|s). The usual general linear supergroupGL(r|s) is the factor group ofG(r|s)
w.r.t. the normal subgroup of jets of diffeomorphisms preserving the first infinitesimal
neighborhood of the origin. It makes sense to speak about the Berezinian for such jets of
diffeomorphisms, which is simply the Berezinian of the corresponding Jacobi matrix (i.e. the
pull-back of the Berezinian onGL(r|s)). The covariance condition for anr|s-LagrangianL
means that

L(g[x]) = (Berg)ρ · L([x]) (4.51)

for all g ∈ G(r|s). This is a nonlinear analog of the covariance condition for the first-order
Lagrangians[18].

The infinitesimal version of the condition(4.51)can be written as

(−1)σ̃ K̃ D|σ |
σ (Ki(t)xai )

∂L

∂xaσ
= ρ(−1)ι̃(K̃+1) ∂K

i(t)

∂t i
L (4.52)

at t = 0, whereK = Ki(t)(∂/∂t i) is an arbitrary vector field vanishing at the origin.
(Clearly, both sides depend only on its jet at the point 0.) Explicitly, the property(4.52)is
equivalent to the following sequence of identities:

xai
∂L

∂xaj
+ 2xaik

∂L

∂xajk
+ · · · = ρ(−1)ι̃δji L, (4.53)

xai
∂L

∂xajk
+ 3xail

∂L

∂xajkl

+ · · · = 0, (4.54)
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and so on to

xai
∂L

∂xaj1···jN
= 0, (4.55)

whereL is a covariantr|s-Lagrangian of weightρ and orderN .
If K = Ki(t)(∂/∂t i) is a genuine vector field on the space of parametersR

r|s , not neces-
sarily vanishing at 0, then it follows from(4.52)that for an arbitrary covariantr|s-Lagrangian
L of weightρ

K(∞)L+ ρ(−1)ι̃(K̃+1) ∂K
i

∂t i
L = 0, (4.56)

whereK(∞) = Ki(t)Di−PKixai (∂/∂x
a) is the prolongation of the vector fieldK (seeSection

2.4).
Let us consider relations between covariant Lagrangians and differential forms.
In the case of ordinary purely even manifoldMm (odd dimension is equal to zero) one

can assign to every differentialr-form

ω = 1

r!
ωa1···ar dxa1 · · · dxar (4.57)

the following covariantr-Lagrangian (i.e.r|0-Lagrangian) of the first order and of weight
ρ = 1:

Lω = ωa1···ar x
a1
1 · · · xarr . (4.58)

For everyr-pathγ ,
∫
γ
Lω = ∫

γ
ω and

Ldω = −dLω, (4.59)

where dω is the usual exterior differential of the formω. Notice that under the identification
of tangent elements with jets inJ∞(π(r)), the projection of the pull-back of anr-formω to on
J∞(π(r))onto the subspaceΩ0,r of horizontalr-forms is equal to the formLω(x)dt1 · · · dt r .

In general, the variational differential−d does not take covariant Lagrangians to covariant
Lagrangians and it increases the order: ifL has orderk, then, generally, the order of−dL is
equal to 2k.

Proposition 4.4. If a Lagrangian L on a purely even manifold M is of the first order and
the Lagrangian−dL is of the first order too, then the Lagrangian L is up to a constant a
covariant Lagrangian corresponding to a differential form: L = Lω + c. The Lagrangian
−dL corresponds to the differential formdω.

This proposition can be easily checked by straightforward calculations. It has the follow-
ing geometrical meaning. In the space of paths on the manifoldM consider a collection of
topologiesTk (k = 0,1, . . . ) such that sequence of pathsγn tends toγ in the topologyTk
if |xn(t)− x(t)| → 0 and a∣∣∣∣ ∂kxan(t)

∂t i1 · · · ∂til − ∂kxa(t)

∂t i1 · · · ∂til
∣∣∣∣ → 0 (4.60)
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for all derivatives of orderl ≤ k. For a given LagrangianL of orderk the corresponding
functional on paths is continuous in topologyTk. On the other hand, if a first-order covariant
LagrangianL corresponds to a differential form:L = Lω, then due to the Stokes theorem
the functionalS[γ ] corresponding to this Lagrangian is continuous not only in the topology
T1 but in the weaker topologyT0. The converse implication leads toProposition 4.4(see
[4,6,12]). In the supercase these considerations yield the definition of forms[15].

Definition 4.4. A covariantr|s-LagrangianL of the first order on a supermanifoldM is
called anr|s-form if the Lagrangian−dL is of the first order too.

The Lagrangian−dL is(r+1, s)-form ifL is anr|s-form and the Stokes theorem is valid. As
follows from Proposition 4.4, on ordinary manifoldsr|0-forms are in 1–1-correspondence
with the usual differentialr-forms and−d corresponds to the usual d, see, for details,
[18].

Remark 4.9. The complete theory of forms in super case includes also objects defined
similarly to Definition 4.4, but in the dual setting, using so-called copaths[17,19,20].

Consider now the action of the variational differential−d for covariant Lagrangians of
higher order.

Proposition 4.5. Covariant Lagrangians that are coboundaries in the complex of varia-
tional derivatives must be of the first order.

Proof. Let a coboundary−dL = xar Fa ∈ Φr|s be a covariantr|s-Lagrangian. Then it must
have weightρ = 1, because it is linear in variablesxar . Let us show that−dL is of the first
order. Consider the identity(4.53)for the case when indexi is equal tor. The variational
derivativeFa does not depend on variablesxai1···ik if at least one of indicesi1, . . . , ik is equal
to r andk ≥ 2. Hence, it follows from condition(4.53)that−dL does not depend on variables
xai1···ik if k ≥ 2, thus, the Lagrangian−dL is of the first order. �

It follows from this proposition that a covariant closedr|s-LagrangianL of order higher
than one is a non-trivial cocycle of the complex of variational derivativesΦ∗|s .

Finally, we consider some constructions for higher-order covariant Lagrangians.

1. Lie derivative and the variational derivative of covariant Lagrangians. LetX = Xa(x)

(∂/∂xa)be an arbitrary vector field onM andLbe a covariantr|s-Lagrangian of arbitrary
weightρ. Then the Lie derivative of this Lagrangian along the vector fieldX, LXL =
PXL = (−1)σ̃ ã D|σ |

σ Xa(∂L/∂xaσ ), obviously, is also a covariantr|s-Lagrangian of the
same weight and of the same order.

The LagrangianL and the vector fieldX = Xa(x)(∂/∂xa) yield also anotherr|s-
LagrangianXa(x)Fa(L), whereF(L) is the variational derivative of the Lagrangian
L (see(4.4)). The LagrangiansLXL andXa(x)Fa(L) differ by a divergence:LXL −
Xa(x)Fa(L) = DiB

i (compare the end ofSection 3.2). If the covariant Lagrangian
L has weightρ = 1, then one can prove thatXa(x)Fa(L) is also covariant of weight
ρ = 1. In general, it has order 2k, if the LagrangianL has orderk.
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2. Composition of Lagrangians. Let L be anr|s-Lagrangian on a manifoldN and letF
be anr|s-Lagrangian on a manifoldM taking values in the manifoldN . Then one can
consider ther|s-LagrangianL◦F called thecompositionof these Lagrangians. Ifxa and
yµ are local coordinates onM andN , respectively,L = L([y]) andF : yµ = Fµ([x]),
then consider the formal substitution

yµ = Fµ([x]), (4.61)

y
µ
i = DiF

µ([x]), (4.62)

y
µ
ij = D2

ijF
µ([x]), (4.63)

and so on. The LagrangianL ◦ F is obtained fromL by this substitution.

One can see that if the LagrangianL is closed, then the LagrangianL ◦F is also closed:
−dL = 0 ⇒ −d(L ◦ F) = 0. (4.64)

Notice the special case whenF is a covariantr|s-Lagrangian of the weightρ = 0. (F can be
viewed as anN -valued function on jets ofr|s-surfaces inM.) In this case, ifL is a covariant
(closed)r|s-Lagrangian of weightρ, thenL ◦ F is also covariant (closed) Lagrangian of
the same weightρ. The order of LagrangianL ◦F is equal, in general, to the sum of orders
of the LagrangiansL andF .

Consider the following toy examples of this construction.
LetM be the Euclidean spaceRm. For everyr, 1 ≤ r ≤ m consider as the target space

N the manifold of orientedr-dimensional linear subspaces ofR
m (the oriented Grassman-

nianG+
r = G+

r (R
m)). Consider a functionFr with values inG+

r such thatFr assigns to
every pointx ∈ R

m and an arbitrary orientedr-dimensional planeΠr through this point
the oriented linear subspace parallel toΠr . The functionFr defines onRm a covariant
r-Lagrangian of weightρ = 0 and of orderk = 1 with values in the oriented Grassmannian
G+
r .
Let ω be an arbitrary closedr-form onG+

r and let the LagrangianLω correspond toω
(see(4.58)). Then the compositionLω ◦ Fm of LagrangiansL andFm is a closed covari-
ant Lagrangian of weightρ = 1 and orderk = 2. If formsω are not cohomologous to
zero we come to covariant LagrangiansLω ◦ F corresponding to top-degree characteristic
classes of surfaces embedded inR

n. We shall consider from this point of view the Euler
classes forr-dimensional surfaces embedded inR

m in two cases:m = n− 1, n = 2k + 1
(even-dimensional hypersurfaces inR

m) andm = 2 (two-dimensional surface, embedded
in an arbitraryRm).

Case 1 (r = m− 1). The oriented GrassmannianG+
m−1 is simply the sphereSm−1. Letω

be a volume form onSm−1:

ω = ιE(r
−m)Dx =

∑ (−1)a−1xa dx1 · · · d̂xa · · · dxm

rm
, (4.65)

whereDx is the standard coordinate volume form onR
m,E = Xa(∂/∂xa) is the Euler field

andr2 = (x1)2 + · · · + (xm)2. Clearly,Fm−1 supplies the Gauss spherical map for each
oriented hypersurfaceCm−1 ⊂ R

m. It is not difficult to see that the value of the covariant
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LagrangianL = Lω ◦ Fm−1 gives the Gauss curvature density. In the casem − 1 = 2k,∫
L is the Euler class.

Case 2 (r = 2). LetL be a covariant 2-Lagrangian in the Euclidean spaceR
m such that

for every two-dimensional oriented surfaceC ⊂ R
m,∫

C

LDt =
∫
L

(
x

(
t,
∂x

∂t
, . . .

))
Dt =

∫
C

R
√

detgDt, (4.66)

wherexa(t i) is an arbitrary parameterization of the surfaceC (i = 1,2), g = (gij ) is the
Riemannian metric induced on the surfaceC:

gij =
∑ ∂xa

∂t i

∂xa

∂tj
, (4.67)

andR is the scalar curvature of this metric. Straightforward calculations show that

L =
∑
a,b

(xa11x
b
22 − xa12x

b
12)P

ab

√
detg

, (4.68)

where

P ab = δab − xai g
ijxbj (4.69)

is the projector on the plane orthogonal to the surfaceC, gij is the tensor inverse to the
metric tensorgij .

We shall represent the covariant 2-Lagrangian(4.68) as the composition of the La-
grangiansLω andF2, whereω is a closed 2-form on GrassmannianG+

2 . Consider on the
GrassmannianG+

2 the homogeneous coordinates(uai ) (a = 1, . . . , m, i = 1,2) such that
ui andu′

i define the same point (oriented 2-subspace ofR
m spanned by the vectorsu1, u2)

if u′
i = t

j
i uj , wheret ij is a 2× 2 matrix with the positive determinant. In these coordinates

the covariant LagrangianF2 with values in the GrassmannianG+
2 isF2(x

a
1 , x

a
2) = (xa1 , x

a
2).

Thus the covariant 2-LagrangianL in (4.68) is equal toLω ◦ F2, where the 2-formω on
G+

2 is given by the following formula:

ω =
∑
a,b

dua1 dub2P
ab(u1, u2)√

detg(u1, u2)
, (4.70)

whereg(u1, u2) is the Gram matrix for the 2-frameu1, u2 and

P ab = δab − uai g
ijubj

= δab − ua1u
b
1(u2 · u2)− (ua1u

b
2 + ub1u

a
2)(u1 · u2)+ ua2u

b
2(u1 · u1)

detg(u1, u2)
(4.71)

is projector on the plane orthogonal to the plane spanned byu1, u2.
The cohomology class of the closed 2-form(4.70) is a generator of the group

H 2(G+
2 (R

m)) = R. To get a better understanding of this form consider the orthonormal
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homogeneous coordinates onG+
2 (R

m), i.e. the coordinatesnai of the vectorsn1, n2 of an
orthonormal basis of the corresponding subspace (i.e. a point ofG+

2 ). In these coordinates
the form(4.70)has the appearance

ω =
∑

dna1 dna2.

It seems plausible that constructions using composition of Lagrangians can be helpful for
the study of topological invariants of surfaces. This approach can be naturally generalized
to the supercase, where standard geometrical considerations are unavailable.
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